= Human-Centered and Explainable Al:
i | Foundations and Applications in Medicine

| Rayan Ebnali Harari, PhD

. Py d \ Narvir | COAlvvy ”‘I \ A \ ™
Ar\Vv/AaArc \vieaical Scnoon WISl =
1 ICQI VQIW IYICUUIVA DUV V IVINAL

@ HARVARD  Rayan Harari,
{ : ‘ ' rhararn{@bwh. harvard.edu




I
,'

What is Human-Centered and Explainable Al (xAl) Broadly?

Designing Al that makes
sense to people




Agenda

| « Part |: Foundations of Explainable Al (XAl)
=1 « Part ll: Explainable Models & Techniques
' ' « Part lll: Readmission Risk Use Case

" « Part IV: Why XAl Matters in Clinical Practice
« PartV: 7 Aspects of Healthcare XAl

» Part VI: Designing Human-Centered XAl

|

« Part VIl: Case Study & Best Practices
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Gaps in Healthcare




l Medical errors are
responsible for

™ between 250,000
"l to 400,000
deaths per year in
the U.S. alone
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The Cost of Fragmentation in Healthcare

A e $320B annual waste due to inefficiencies and poor coordination
(CMS 2024)

e Clinicians face burnout, cognitive overload
| e Critical decisions are delayed or missed in high-risk setting
| - . o
— e Rural and underserved communities suffer disproportionally
= :
e We need context-aware, human-centered medical tech to close
these gaps .
< S
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Lane 1: Al for Clinical Decision Support

Exponential Rise

https://grantchestergrowth.com/surge-in-fda-approved-ai-
medical-devices-signals-a-new-era-in-healthcare-innovation/
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Lane 1: Al for Clinical Decision Support

Exponential Rise

U.S. Artificial Intelligence (Al) In
Medical Imaging Market
Size, by Application, 2020 - 2030 (USD Million) I
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2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Cardiology
® Others

Respiratory & Pulmonary
@ Orthopedics

©® Neurology
Breast Screening
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GRAND VIEW RESEARCH

33.2%

U.S. Markat CAGR,
2024 -2030

Number of Devices

https://grantchestergrowth.com/surge-in-fda-approved-ai-

Growth of Al Medical Devices Authorized
by the FDA, 1995-2024
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DATA/IMAGES

ALGCGORITHMS % COMPUTER
POWER
&Q WHY IS Al

soomine DA

NOW??
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How Al Works

ohn Hopfield, and Geoffrey Hinto
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Deep Learning

ARTIFICIAL
i INTELLIGENCE
MACHINE LEARNING
A h hat enabl
ni;i:ng:: :Oa,:“c,:ib & Ability to learn without DEeep LEARNING
human behavior explicitly being programmed £ Sttarne froem dats vSing
neural networks
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Types of Machine Learning

Clustering

e.g., K-means
K nearest neigh.
Spectral

Discrete

No

v

g Unsupervised

Embedding

Continuous e.8., POD/PCA
Autoencoder
Diffusion maps

Model Generative
Models (GAN)

Training

Data Labeled? imb Semi-
' (truth) supervised

(self-supervised)

Reinforcement
Learning

Discrete

Modcl‘ Discrete or

Continuous?
Continuous |e.g., Linear |
*|Generalized linear

Gaussian process,

T



Simple Linear Regression: - 4 y, > TRUE VALUE
Salary ($) | PREDICTION ERROR

— V- PREDICTED VALUE

—_—

_— SUM (y - y )* -> min

Experience

https://www.youtube.com/watch?v=EOHmnixke2g




Simple Linear Regression: - 4 v, > TRUE VALUE
| PREDICTION ERROR

Salarv (%)
= A
TED VALUE
Dependent Variable Independent Variables
(Response Variable) (Predictors)

= I A \

Y =By + B1X1 +B2Xz + -+ &€ min
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Y intercept Slope Error Term
https://www.yvoutube.com/watch?v=EOHmMnixke2g Coefficient




Linear Regression Logistic Regression
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Category A

K NEAREST NEIGHBORS (KNN)
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SVM
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Root Node

Trees based learning

DQC;S]OA 1% 18,..*50 ) \
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Unde_r“stomding the msks to
prevent a heart attack.

Leaf Nodes




BAGGING

Dataset :"

Random Subset-1 Random Subset-2 .. ....... Random Subset-n

- | TREE-1 \ [/ TREE-2\ [/ IREE-n

Result Aggregation

.

L Final Prediction J




Deep Learning

Progressive extraction of features by a Neural Network

Input image Low Level Features Mid Level Features High Level Features
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Image

s Pre-processin
acquisition P 8

Classification Classification
+ Localization
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Feature
extraction

Object Detection

Target Task
(Classification,
Segmentation, Object
Detection, etc)

Instance
Segmentation

Multiple objects




Underfitting Overfitting Balanced




Data Preprocessing

l
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Data Data Data Data
Cleaning Transformation Integration Reduction
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Landscape — FDA-approved Al cases by specialty

Specialty
Radiology
Cardiovascular
Neurolegy
Hematology
Gastroenterology-Urology
Ophthalmic
Anesthesiology
Pathology
Clirical Chemistry
General and Plastic Surgery
Microbiology
Orthopedic
General Hospital
Dental
Ear Nose & Throat
Physical Medicine

BT
i g
b
—
arm
=
o=
=

Radiology

Obstetncs and Gynecology
immunology

ARRNNAN

Source: U.S. Food & Drug Administration
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Rise of Black-Box Clinical Al

* Deep CNNs for imaging, transformers for EHR - high accuracy.
 Opaque internals raise concerns over failure modes & bias.

« Human-Centered and Explainable Al (XAl) bridges gap between performance and
accountability.

Al Black Box Problem

INPUT — ‘
we see the inputs and

HOW?? outputs, but the processes
in between remain hidden.

OUTPUT
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Human Centered Al (HCAI)
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Technology
Augmented
human ability
with Al
Human
Centered Al
Ethical, Sustainable and
Ethics Trustworthy Humans
Ethical, Algorithm
Responsible Explainability
and and
Transparent Al Interpretability




What is Explainable Al (XAl)?

Narrow: methods that make model decisions understandable.
Broad: anything making Al systems transparent (data, performance).

HOLZINGER

do0013 | 7 w 5
B | WILEY- IRE

Why did the algorithm do that?

Can | trust these resulls? Q (__

How can | correct an error?

A possible solution

[

Input data

The domain expert can understand why...
The domain expert can learn and correct ermrors...
The domain expert can re-enact on demand...

ﬁ HARVARD  Rayan haa,

rharari@bwh harvard.edu




' I Al Solution
I R A
Features Algorithm Model Parameters

Each element constituent of the solution process needs to be explainable for

the solution to be truly explainable [Lipton 2016]

l.f KenSci., Inc, 2018.

xAl and Human-Centered Al is more than
Models

User
‘g
o4 (! @
‘:I w Cognitive Capacity
Model '

Domain Knowledge

Explanation Granulari




Why HCAI and XAl is Critical in Medicine

High-stakes decisions: diagnosis, triage, treatment planning.
Regulatory pressure: GDPR ‘right to explanation’, FDA SaMD draft.
Clinician trust & patient safety depend on understandable models.
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Explain Interpret Understand

5

Why did this How does What are the
model make this model model’s
a prediction? work? capabilities

and limitations?



Human Naturalistic Decision Making (NDM)

NDM research to study how

people make decisions in Naturalistic
real-world settings.

The NDM framework
emphasizes the role of

experience in enabling 4
people to categorize Maklng
e | situations to make effective
decisions. Edited by

Caroline E. Zsambok
Gary Klein
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How human make decision?

System 1 System 2
= [HINKING,
- FAST..SLOW
& L— .
.
DANIE]

Fast, intuitive and Slow, conscious

RAHNEMAN

emotional and effortful




(Experience the Situation in a Changing Context )

Recognition-Primed Decision Seck More

Information Is the Situation) G aessssssnsnns

Model (RPD) — Familiar?

Situation

Recognition has four aspects

Plausible
Goals Cues
Are
Expectancies @ ®
Violated?

Mental Simulation
of Action (n)

Yes, but

s -t
Will it Work?
’ No

Yes

Implemen
Exdowd Oy Cary A W, Jom Orssary Poder Catereood plement

o Caroiow £ Jaamton

Figure 1. Model of recognition-primed decision making. ( Deciston making in action: Models and methods. G. A, Klein
). Orasanu, R. Calderwood, C. E. Zsambok, Editors. Copyright © 1993 by Ablex Publishing Corporation. Norwood

ﬁ HARVARD Rayan Harari, NI, Reproduced with permission of Greenwood Publishing Group. Inc.. Westport. CT.)
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Where Explanations Fit in the

Pipeline
Data Preprocesssing Training Deployment
S Xl -E
Data ingestion Preprocessing Validation
. Pre-deployment: model o At runtime: clinician-.facing
debugging & bias checks Insights for each patient

» Post-deployment monitoring:
drift & fairness audits




Personas!




Must match the complexity &
capability of the consumer

model centric aix

Data Scientist

Domain Knowledge:

. Speaks "Al, ML, Stats”

. Attention schemes
Shapelets

. Model agnostic Models

Main AIX Focus:

. Model performance

. Model transparency

* Model and instance level explanations

Role: Direct conversations with clinician researcher

@ HARVARD
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Must match the domain

The HealthXAI Persona Continuum knowledge of the consumers

Domain Knowledge:

*  Clinical background

. Medical Informatics,

« Speaks Al, ML, Stats but "applied”

. Speaks/understand medical concepts

Main AIX Focus:

. Model performance

. Model transparency

. Model and instance level explanations

. KPI analysis

Role: Bidirectional conversations with both data
scientist and clinicians

Clinician

Domain Knowledge:

. Clinical expert, speaks in medical terms
. Understand medical informatics

. May have a statistics background

Main AIX Focus:
. Patient centric focus
. Instance level explanations

Role: Direct conversations with clinical researcher

Dey, et al. 2022, https://doi.org/10.1016/j.patter.2022.100493




Must match the complexity &
capability of the consumer

model centric aix

Data Scientist

Domain Knowledge:

. Speaks "Al, ML, Stats”
. Attention schemes

. Shapelets

. Model agnostic Models

Main AIX Focus:

. Model performance

. Model transparency

. Model and instance level explanations

Role: Direct conversations with clinician researcher

The HealthXAI Persona Continuum

Domain Knowledge:

. Clinical background

. Medical Informatics,

. Speaks Al, ML, Stats but "applied”

. Speaks/understand medical concepts

Main AIX Focus:

. Model performance

. Model transparency

. Model and instance level explanations

. KPI analysis

Role: Bidirectional conversations with both data
scientist and clinicians

Must match the domain
knowledge of the consumers

Clinician

Domain Knowledge:

’ Clinical expert, speaks in medical terms
. Understand medical informatics

. May have a statistics background

Main AIX Focus:
. Patient centric focus
. Instance level explanations

Role: Direct conversations with clinical researcher

Roles of personas for Disease Progression Modeling

Domain Knowledge:

. Apply the best suitable ML/AI technique (e.g.,
HMM/ RNN) for DPM

. Extend the algorithm to suit the purpose of
generating interpretable DPM

. Find optimal number of stages with feedback from

clinical researcher

Main AIX Focus:

. Find explanations for each of the states of DPM

. Find instance level explanations for DPM

«  Assess model performance and transparency of
DPM

@ HARVARD
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Domain Knowledge:

. Speaks/understands the mental model of the
disease progression mechanism

. Defines the inputs and outputs of overall DPM

Main AIX Focus:
. Analyses performance and transparency of DPM

. Provides feedback about whether the stages of
DPM correspond to the metal model
. Analyses the model level explanations for

generating actionable insights
. Validates the Instance level explanations
. KPI analysis of the explanations

Domain Knowledge:

. Provides clinical background about the disease
mechanism

. Defines the overall goal of the DPM which can
mimic the clinical progression of the disease

Main AIX Focus:

. Analyses the usefulness of explanation for clinical
decision making

. Instance level explanations for designing patient’s
mterventions

. Relates DPM to generate evidence based medicine

Dey, et al. 2022, https://doi.org/10.1016/j.patter.2022.100493




INTERPRETABILITY
DIMENSIONS

JAN

v
Stage Scope
| l
l I
® 0O ai 8
Ante hoc Post hoc Global Local
(built-in  (after training) (whole model (single

interpretability) l behavior) prediction

l reasoning)

v

Linear Model- P.(: Feature
Regression| | agnostic importance

(works on rankings
Decision del
dymovey SHAP value for

Trees ;
SHAP one patient

l

~ y o o \

LIME

Grad-CAM

- . Attention
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R0

Must match the complexity &
capability of the consumer

model centric aix

Data Scientist

Domain Knowledge:

. Speaks "Al, ML, Stats”
. Attention schemes

. Shapelets

. Model agnostic Models

Main AIX Focus:

. Model performance

. Model transparency

*  Model and instance level explanations

Role: Direct conversations with clinician researcher

The HealthXAI Persona Continuum

@ Clinical Researcher

Domain Knowledge:

. Clinical background

. Medical Informatics,

« Speaks Al, ML, Stats but "applied”

« Speaks/understand medical concepts

Main AIX Focus:

. Model performance

. Model transparency

. Model and instance level explanations

. KPI analysis

Role: Bidirectional conversations with both data
scientist and clinicians

Must match the domain
knowledge of the consumers

Clinician

Domain Knowledge:

. Clinical expert, speaks in medical terms
. Understand medical informatics

. May have a statistics background

Main AIX Focus:
. Patient centric focus
. Instance level explanations

Role: Direct conversations with clinical researcher

Roles of personas for Disease Progression Modéling

Domain Knowledge:

. Apply the best suitable ML/AI technique (e.g.,
HMM/ RNN) for DPM

. Extend the algorithm to suit the purpose of
generating interpretable DPM

. Find optimal number of stages with feedback from

clinical researcher

Main AIX Focus:

. Find explanations for each of the states of DPM

. Find instance level explanations for DPM

. Assess model performance and transparency of
DPM

Rayan Harari,
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Domain Knowledge:

. Speaks/understands the mental model of the
disease progression mechanism

. Defines the inputs and outputs of overall DPM

Main AIX Focus:

. Analyses performance and transparency of DPM

. Provides feedback about whether the stages of
DPM correspond to the metal model

. Analyses the model level explanations for
generating actionable insights

. Validates the Instance level explanations

. KPI anatysis of the explanations

Domain Knowledge:

. Provides clinical background about the disease
mechanism

. Defines the overall goal of the DPM which can
mimic the clinical progression of the disease

Main AIX Focus:

. Analyses the usefulness of explanation for clinical
decision making

. Instance level explanations for designing patient’s
nterventions

. Relates DPM to generate evidence based medicine

Dey, et al. 2022, https://doi.org/10.1016/.patter.2022.100493
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wPe Method

Feature Importance
Rule Based
Local Explanations Saliency Maps
Prototypes Based

Counterfactuals

Collection of Local Explanations
Representation Based
Global Explanations

Model Distillation

Summaries of Counterfactuals

@ﬁﬁﬁ)’ﬂb‘éctr?ﬁ 1ath Bix.com/article/2021.09.00007/demystify-post-hoc-explainability




XAl Method
Taxonomy

l

Y Y
Can it explain a Does it explain a
particular model or particular sample or When does it occur?
many models? the entire model?

Y
" Does it work )
separately from the
model or does it
visualize the
\_ model? )

Model- | Global Pre-

Agnostic model —» Surrogate

____yModel- ——> Local iy W
Specific model ——>»Visualization

Post-

model

>
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Feature Importance
Based Explanations

Rule Based
Explanations

Tabular

Prototype Based
Explanations

Counterfactual
Explanations

mantal status <= 0.5

Feature Value -
P = Prediction Probabilities
34 < &UCAILON UM years <= 1/D
<100« [ 0.15
355 <age <=0l
o] >100K 0.85
occupation executive >= U5
occupation clerk >=0.5 ==
Ribeiro ¢t al., 2016
L) ~ A ’
. 2t 1 ¥ s 2
£ i ACTta 9 13 4
< ] Ter 1 ) al = 4  + r
2 e = X €
] slte stat f . f X e X
» c sk 4 ' 4

Top 5 Iinstances

driving the prediction

LA
)
Apply for a Loan
-
e Loan Rejected

BLACK-BOX

MODEL

Recourse: Your loan will be approved If you

Tabular Data

Letham et al,, 2015

Prediction:Play

Age Income Debt Accounts

35 S0000 20000 10

—» ractual explanation

Age Income Debt Accounts

35 1501 20000 - CLountesrfactual
A'n'i',\“.lfnjx.",

-

Increase your income by $25000 and close 3 accounts




HARV

Text

Saliency Map
Visualization

Input Reduction

Prototype Based
Explanations

Text Data

NAY . . o Mask 1 Predictions:
Simple Gradients Visualization

See saliency map interpretations generated by

Saliency Map:

N
Y ey Well drmsaes) man o wiw \
)
| vem O " '
Ll 1
\ '
fdevee
N
Reduced input for
= S
Reduced input for
Reduced input for ! "
Wallace et al,, 2019 ‘ " Ol
A sometimes tedious film Credulous poative
An admittedy mid gf
Prediction. positive semtiment A simplestic narrative pondt
el
‘ VOOWeRLar fering whuct
( ehow SRS AN OSCAr NOMINALON R It
" " fony
v y flashy Dut r ratively opaqut negatne
0 ( A ). 4% 13
Ffu ! cheesy dia LUt g SAR
Salient tokens in the input Influential examples in the trawming cor

Dus
pus

Feng et al 2018

Han ¢t al., 2020




Image

8 HAKVAKD

Saliency Map
Visualization

Shapley Value
Importance

Concept Attribution

uw,u R LS LR 1

rharari@bw .f harvard.edu

Image Data

loput WSI

Simonyan et al,, 2013

Ghorbani et al., 2020
Pumor Heatmap Patch predictions Explanation

-

Graziani et al,, 2020
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Time Series Data

] Dot FordA, Modol Papars
[Imns _ : 4 _ e

Relevance sre R ——— : =

LDeeplir |

Heatmaps = Bw PEENIESY 1as i mAn ‘x

FIIEINN I I SN T I EEI IS M I NI NI I JOEN IEEY AN eI T amm

8 L B i 2.7 #i 3
Schiegel et al., 2019

Time . - o~ ’—_ - :.'_. 'y + 0 ,' . : . --—'""'—‘h '.;"".'.
. Prototype Based ' ’ = '
Series Explanations "o

't al 017 -~
U et al., 2¢ L | T | ] - ot a 2019

Patch Based | e .| somrsomamen
Classification [ Crommstcat

Mercier et al, 2021
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Going to detail of a few techniques




Example 1: Model Dev
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Knee OA Progression

Carulage

\ \ Bone
Osteoarthritis (OA) Burden Meniscus | A |

ot Cartilage

. > _ B S L
e OA is a major cause of disability =7 = 3 \ re
worldwide (4th leading cause). - § g Joint
e Normal A Y/ Space
e Significant unmet need for joint (7 A Narrowing
disease-modifying therapies (DMOADS) Apece

e Radiographic progression is slow and
heterogeneous, complicating drug trials.

MRI

e X-ray measures (joint space width) are
standard but not always sensitive
enough.

e MRI provides detailed anatomical
information (cartilage, meniscal tears,
effusions).
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Data Inputs for Modeling

Other Clinical Data

Measurement
(Scores)+ Demog

WOMAC Wede B CotVoi L CetVo Rdma WEBL) NTER) TERL UMy
' 4 e s A% 4 o ' 4 ™ A

7@ HARVARD
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Images (for
CNN)
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SRt ot ol Artheies Res Ther

hisps//Slong/ 101 1861 307S

02102

A Multimodal Approach

)
v

s /D

\ : 'depth' attention -
. . Scores

cept!

Clinico
varigbles

Rayan Harari,
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' reduced feature
. veclor

------

Feature Extractor
(EfficientNet-B0)
Pre-trained on ImageNet,
outputting 1280-d
embeddings per slice.
Attention Sub-Model
Leamns slice “importance”
weights (particularly
relevant slices for cartilage
changes).

Multilayer Perceptron
Aggregates weighted MRI
features + clinical data —
final classifier (progressor
VS. NoON-progressor)

Hyperparameter
tuning (learning rate,
batch size) with
cross-validation.




ML Models Performance on Measurements/Clinical Data
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ML Models Explainability (xAl)
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Example 1: Alg Dev
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Saliency maps

M Saliency maps have become a

popular tool for analyzing and
: [cxplaining neural network

Bl models.

-

- | These heatmaps show which
Iregions of the input are more
important for the model’s

prediction.

Image
classifier

Increasing importance
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Saliency maps
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Measuring the effect of input masking

e Localization = bounding box coordinates.

e (lassification = class probabilities.

e Objectness = [0, 1] scalar.




Measuring the effect of input masking

Similarity score 1s computed using the similarities between the
three individual components.

L
LJ

Intersection over Union

sp(dy,d;) =ToU(L', L7)



Measuring the effect of input masking

Similarity score 1s computed using the similarities between the

three individual components.
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Measuring the effect of input masking
- Similarity score 1s computed using the similarities between the

three individual components.

O’
!
! Objectness score (Optional)
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Measuring the effect of input masking

Similarity score 1s computed using the similarities between the

three individual components.
L P* O'
I’ pi O’

s(ds,d;) = sp(de,d;) - sp(ds,d;) - so(dy, d;)




Pointing Game metric

The Pointing Game metric measures how often the saliency map
peak falls within the bounding box or segmentation mask of the
object. When this happens a “hit” 1s scored. If the peak 1s outside

B the object 1t 1s counted as a “miss”.

Final Pointing Game score reports the accuracy:

' *'thitﬁ
PG = ‘
thit-S I Nmisses

& person
- P&

N




' User’s trust

Instructions X Two robots are showing you why they found the following object within the box. Which Robot’s explanation is more reasonable?

Select an option

Robot 1 Explanation Robot 2 Explanation

Substantially more users (50.2% vs 27.4%)
found that explanations of a stronger
model (YOLOvV3 vs YOLOv3-Tiny) to be



Saliency Map

Two axes of visual encoding of saliency map — visual range

Default design Data I'll_(crmg

= Binary mask
parameters

Contour
parameters

Heatmap
\paramelers |

i More detail
Rayan Harari from saliency map
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User study interface

Please select all (0 to 9, you can select all or none based on your judgement)
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Please select all (0 to 9, you can select all or none based on vour judgement)
ViSu;
Please select all (0 to 9, vou can select all or none based on vour judgement)

visualizations which faithfully capture the object:
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By computing
average saliency
maps per category

WCEC Call SCC SOINC

common patterns 1n

input importance.

Normalized average
image of person

Average saliency Average saliency
map for YOLOv3 map for Faster-RCN




Failure mo des Dog predicted as Cat

e Poor classification

| We can subtract normalized
saliency maps to analyze what

caused the classification error.

Here, the dog’s black fur and tail Ground truth saliency Norm(P) — Norm(GT)
could be the cause.




Example 3: A Case Study of User

Understanding
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Motivation

« lo develop and test an Al decision support system with different
modalities in explainability (decision tree, etc) for perfusionist
during operations.
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s XAl Techniques

« Decision Tree
o Counterfactual
| « Case-based
- . Feature Importance
« Nothing

Counterfactual

Example
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Feature Importance

- A technique that involves identifying the most important features or factors

XAI TeChnlqueS that contributed to a particular decision or outcome.
Example:
Decision Tree
Counterfactual o
Case-based ) ';.,;
Feature Importance F

Nothing S ST

Example: “if
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= How can we develop an
| Al-based decision support
system for this settings?
—
3 How human naturally
makes decision in high-
mm| stakes environment?

ﬁ HARVARD  Rayan Harari,

rharari@bwh. harvard.edu

CAUSES

INPUTS

ACTIONS

GOAL




Data Collection

We interviewed with 8
perfusionists to
understand how they
make decision
regarding managing
level of DO2.

Data collection in OR
for 5 cases

Working with 2
perfusionists to create
XAl scenarios
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CAUSES

INPUTS
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GOAL

(Experience the Situation in a Changing Context )

Seok More
Information

Is the Situation rnnsnnsnnsnnas

Reassess
Situation

Familiar?

Are

Expectancies

Violated?

Recognition has four aspects

Plausible
Goals

gAl

Mental Simulation
of Action (n)
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| e Instead of having Al to
| take over all decision
making process, we
are thinking to
integrate different
pieces of Al in part of

| human naturalistic
decision process

Seok More
information

Reassess
Situation
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Are
Expectancies
Violated?

Clinician-Centered xAl Decision
- Support Systlg

xperience the Situation in a Changing Context )
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Recognition has four aspects

Recognition

.
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Next steps

Fine tuning the framework and
Using our perfusionists data collection (interview), to describe
how the framework can be used.

Conceptualize an envisioned decision support system in OR
based on the framework

Draft the paper
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XAl Techniques

Decision Tree
Counterfactual
Case-based
Feature Importance
Nothing
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. XAl Techniques
« Decision lree
| o« Counterfactual

« (Case-based

o Nothing

Feature Importance

- A technique that involves identifying the most important features or factors

that contributed to a particular decision or outcome.

- Evamnla

Decision Tree

A 60 year old ma th history « t on prese nal 1l droop and ri 1 and leg
weakness for six hours. He is also unable to speak and does not follow commands. His blood pressure is
155/80. He does not have a history of sickle cell anemia and he is not on an anticoaqulant. Head CT

° Feature |m pOI’taﬂ ce shows no hemorrhage and CT angiography shows absence of contrast in the

left mic

idie cerebral artery

His low den ! ein (LDL) leste 1¢ hich of the foll 1q IS the best next step?
County
3
Sympors
Which of the ollowing treatments 1s the best next step? cccuerod Jass than
24 hours

nae

y

rd

Symrploms
OCCUTEd roale
than 4.5 hours

sfusion
Example: “if | ha Atorvastatii /
o

T Fase
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Rate your agreement with the robot’'s suggestion

™ N

'~

~Nifal 1 ¢ ree $
wi il Y WIASadlet N

gerstand i
{ \ 0 Del 1 e
{ 10 ()¢ |
qQree w |
DOt ¢ 10

12 How confident are you in relation to your choice?

Very confident
Confident
Moderately confident

Very little confident
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7 Aspects o XAl in Healthcare

@ ¥ B

Transparency Domain Sense Consistency
——0
h
Generalizability Generalizability Trust/ Fidelity
Performancce
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Aspect 1: Transparency

Transparency

Ability of the machine learning algorithm,
model, and the features to be
understandable by the user of the system.

Admission Prediction
What is the likelihood of the patient being

admitted to the hospital from the emergency
department.

@ HARVARD  Rayan Harari,
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Aspect 2: Domain Sense

Domain Sense | | Several years later, Katherine
The explanation should make sense in the domain of revisits the emergency

application and to the user of the system department due to abdominal
pain. She has an elevated

temperature and is
dehydrated.

She is at the ED on a Friday
after work. The ED is very

ED Census Prediction crowded and she must wait
Predict the number of patients in the emergency several hours to be seex.
department (ED) at a given time

B HARVARD  Rayan Harari

rharari@bwh harvard.edu




Aspect 3: Consistency

| Consistency

: The explanation should be consistent
across different models and across

N | different runs of the model
« | LWBS
} Left without being seen refers to a
| patient leaving the facility without being

seen by a physician

@ HARVARD  Rayan Harari,

rharari@bwh, harvard.edu

Patients at Risk of Leaving Without Being Seen

m Patients at Risk of Leaving Without Being Seen




Aspect 4: Parsimony

Parsimony

The explanation should be as simple as possible

Applies to both the complexity of the explanation and the
number of features provided to explain

Admission Disposition

Where in the hospital the patient should go once
they are admitted

B9 HARVARD  Rayan Harar,
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Aspect 4: Parsimony

» MDL (Minimum Description Length) and Occam’s
i Razor

« Occam’s Razor: To derive a unifying diagnosis that
| can explain all of a patient’s symptoms

« Hickam’s Dictum: A man can have as many diseases
as he damn well pleases

- + Occam’s Razor in Machine Learning [Domingos 1999]
« Occam'’s First Razor

o ’ * Occam’s Second Razor

« The simplest explanation is not always the best
= ] explanation

© KenSci., Inc. 2018.
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Aspect 5: Generalizability

Generalizability

Models and explanations should be
generalizable across problem whenever
possible

Length of Stay
The time that a patient will spend at a
particular healthcare facility

B HARVARD  Rayan Harari

rharari@bwh harvard.edu

Katherine eventually develops diabetes. It is
well controlled and she takes her medications as
directed. One afternoon, she is admitted from
clinic due to highly elevated glucose levels and a
urinary tract infection. Her nurse tells her that
based on her iliness and other factors, her
predicted length of stay is 3 days.




Aspect 6: Trust/Performance

Trust / Performance

* The expectation that the corresponding DETERIORATION
predictive algorithm for explanations should have gy MEN

a certain performance

ICU Transfer Prediction

 Predict if a patient on the hospital ward will
require transfer to the intensive care unit due to
increasing acuity of care needs

B9 HARVARD  Rayan Harar,
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Aspect 6: Trust/Performance

Expectation that the predictive system has a
sufficiently high performance e.g., precision,
recall, AUC etc. [Lipton 2016, Hill 2018]

Explanations accompanied with sub-par
predictions can foster distrust

The model should perform sufficiently well on the
prediction task in its intended use

The model has at least parity with the
performance of human practitioners

Trauma patients: vital signs and lab criteria fulfill
criteria to trigger alarm, leads to increasing
numbers of false positives [Nguyen 2014)

Performance

© KenSci., Inc. 2018.

rharari@bwh harvard.edu
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Aspect 7: Fidelity

Fidelity

« The expectation that the explanation and the
predictive model align well with one another

Risk of Readmission

 Predict if the patient will be readmitted within a
particular span in time, i.e. 30 days from time of
discharge

Rayan Harari,

rharari@bwh harvard.edu
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Explanations
Provides interpretable
Insights and justifications

S

Assistive Intelligence

Artificial Intelligence \
Custom machine learning @ \ Enhances and augments

model trained on clinical

data (g @ l

Clinical Expertise
Input and oversight of clinicians and healthcare professionnals

clinical decision-making
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Human-Centered XAl Principles

Treat explanation as UX, not
afterthought.

Adapt depth to user expertise (nurse vs
data scientist).

Support dialogue: ask-answer loops.

Secor'\dary

Research :
teration

Information .
Architecture ' Wireframe
: |
Usability :
Testing Affinity
3 Mapping
Stakeholder
Feedback
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Design Challenge: No One-Size-Fits-All




Question-Driven Design Framework

Collect user questions (Why? How to improve?).
Map to explanation types & visuals.
Iterate with feedback sessions.

f R TRy W . .

- hov iser Specify the Design
L user’s needs solutions
VA TN R R '

. the oroduct
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Step 1: Gather Clinician Questions

Card-sorting workshops & shadowing.
* Log real-time questions during rounds.
Prioritize by frequency & decision impact.

@ HARVARD  Rayan Harari,
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Step 2: Analyze & Prioritize

-r—z—'n- Cluster into categories: Why, What-if, Performance.
'? Identify unmet needs & misconceptions.

5 Translate into user requirements.

@ HARVARD  Rayan Harari,
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Step 3: Map to Techniques

NDVI4
Sip1 ‘
MaxRain 4 . '
Elv1 +
Sad F .
Ff4
Er4

._+_
R4 . -+—
Pic . i-

Susceptibility

Dd+
Prcy

« Why => SHAP, rule lists. &

« What-if = PDP, counterfactual.
SHAP value (impact on model output)

« Performance = calibration, confidence intervals.

R HARVARD  Rayan Harari,
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Bridging Algorithm-UX Gap

Data scientists embed tags (units, ranges) for UL.
Designers ensure colorblind-safe palettes.
Joint design reviews avoid misinterpretation.

F
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Mitigating Over-Trust & Cognitive Load

* Provide uncertainty & encourage double-check.
» Use cognitive forcing functions (Buginca 2021).
« Limit number of explanatory elements per alert.

Overtrust

Trust in Al system
®

Distrust

Al capability
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Key Clinician Questions

* 'Why high risk?'; '"How to reduce it?'; 'ls model confident?'.
« Dashboard groups answers accordingly.
» Fast access crucial during 3-minute bedside encounters.
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The 4 Levels of Evaluation

Level 1: Technical
performance

Level 2: Task-level utility

,;’ HARVARD

Rayan Harari,
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Level 3: Clinical workflow
integration

Level 4:
Sociotechnical/contextual
impact




Explainability # Interpretability

""_’ﬂ\ Explanation = - Need both for
: Interpretability
N how it behaves - i . safety and
| . = how it's built
in context trust
w
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What Makes an Explanation Useful?

 Relevant to current decision context
o Reflects model reasoning clearly
e Supports, not replaces, human judgment
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From Publication to Practice

e Successful tools: sepsis early warning, imaging triage
o Characteristics: iterative dev, strong user feedback
o Barriers: lack of generalizability, alert fatigue

f% HARVARD
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Summary: Key Lessons Learned

. AUQC, etc is not enough—context matters
. Evaluation must go beyond model to system
. Design must center users, workflows, and equity
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Next Steps for Learners

o« Use the framework to critique published models
e Involve users early in your Al projects
e Design evaluations that reflect real-world use
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